1 Distance of a point to an ellipse

Let us consider a centered ellipse with its axes along the x and y axes. The parametric equations of a point (x_e, y_e) of the ellipse are

$$
\begin{align*}
x_e &= a \cos \varphi, \\
y_e &= b \sin \varphi,
\end{align*}
$$

where a is the semimajor and b the semiminor axis, and φ is the angle defined in Fig. 1.

The distance l of a given point of the plane (x_p, y_p) to a point of the ellipse (x_e, y_e) is given by

$$
l^2(\varphi) = (x_p - x_e)^2 + (y_p - y_e)^2 = (x_p - a \cos \varphi)^2 + (y_p - b \sin \varphi)^2,
$$

which is a function of the angle φ. The distance of the point (x_p, y_p) to the ellipse is the minimum value of l, which occurs for a value of φ such that $dl^2/d\varphi = 0$. The derivative of the last equation gives

$$
2(x_p - a \cos \varphi)a \sin \varphi - 2(y_p - b \sin \varphi)b \cos \varphi = 0,
$$

which can be written as

$$
x_p a \sin \varphi - y_p b \cos \varphi = (a^2 - b^2) \sin \varphi \cos \varphi.
$$
This is an equation in φ that has to be solved to find the value of φ for which the distance is minimum. Once φ is found, the distance of the point (x_p, y_p) to the ellipse is given by

$$d = \sqrt{(x_p - a \cos \varphi)^2 + (y_p - b \sin \varphi)^2}. \quad (5)$$

2 Alternative derivation of Eq. 4

The equation in φ that gives the point of the ellipse nearest to the point (x_p, y_p) can be also derived from the fact that the straight line defined by the point (x_p, y_p) and the ellipse point (x_e, y_e) nearest to it is perpendicular to the ellipse at (x_e, y_e). Thus,

$$\frac{y_p - y_e}{x_p - x_e} = -\left(\frac{dx}{dy}\right)_{e}, \quad (6)$$

where $(dy/dx)_e$ is the slope of the ellipse at (x_e, y_e). From Eq. 1, we derive

$$\frac{dx}{dy} = \frac{dx/d\varphi}{dy/d\varphi} = \frac{-a \sin \varphi}{b \cos \varphi}, \quad (7)$$

and substituting into Eq. 6 we obtain

$$\frac{y_p - b \sin \varphi}{x_p - a \cos \varphi} = \frac{a \sin \varphi}{b \cos \varphi}, \quad (8)$$

which is the same equation as Eq. 4.

3 Solution of Eq. 4 through a 4th degree polynomial

Eq. 4 can be written as

$$\frac{x_p a}{\cos \varphi} - \frac{y_p b}{\sin \varphi} = c^2, \quad (9)$$

where $c^2 \equiv a^2 - b^2$. The change to the new variable $t = \tan(\varphi/2)$, with

$$\cos \varphi = \frac{1 - t^2}{1 + t^2}, \quad \sin \varphi = \frac{2t}{1 + t^2}, \quad (10)$$

transforms the last equation in φ into an incomplete 4th degree polynomial in t,

$$y_p b t^4 + (2x_p a + 2c^2)t^3 + (2x_p a - 2c^2)t - y_p b = 0. \quad (11)$$

Two of the four possible roots of the polynomial will give the points of the ellipse nearest to, and farthest from, the given point (x_p, y_p).

4 Iterative solution of Eq. 4

A simple iterative scheme to solve Eq. 4 is to write it in the form

$$\tan \varphi = \frac{(a^2 - b^2) \sin \varphi + y_p b}{x_p a}, \quad (12)$$

begin with an initial value for φ (for instance $\varphi_0 = 0$), and iterate

$$\varphi_{i+1} = \arctan \left[\frac{(a^2 - b^2) \sin \varphi_i + y_p b}{x_p a} \right]. \quad (13)$$
In order to avoid the indetermination in φ ($\tan \varphi = \tan(\varphi + \pi)$), it is best to consider that the distance from the points (x_p, y_p) and $(|x_p|, |y_p|)$ to the ellipse are the same, and modify slightly the last equation, to force that $0 \leq \varphi \leq \pi/2$,

$$\varphi_{i+1} = \arctan \left[\frac{(a^2 - b^2) \sin \varphi_i + |y_p| b}{|x_p| a} \right], \quad (14)$$

and calculate the distance as

$$d = \sqrt{(|x_p| - a \cos \varphi)^2 + (|y_p| - b \sin \varphi)^2}. \quad (15)$$

This iterative scheme has been tested to converge for a large sample of random ellipses and points. However, it could not converge for some pathological cases.

5 General case for a non-centered, non-aligned ellipse

Let us consider that, in general, the ellipse is centered on a point (x_0, y_0), and its major axis is at an angle θ from the x axis (θ growing from x to y). Let us call (x', y') the coordinates with origin at the ellipse center, and aligned along the ellipse axes. The coordinates of a point of the plane (x_p, y_p) in the new coordinate system are

$$x'_p = (x_p - x_0) \cos \theta + (y_p - y_0) \sin \theta,$$
$$y'_p = -(x_p - x_0) \sin \theta + (y_p - y_0) \cos \theta, \quad (16)$$

while the inverse transformation is

$$x_p = x_0 + x'_p \cos \theta - y'_p \sin \theta,$$
$$y_p = y_0 + x'_p \sin \theta + y'_p \cos \theta. \quad (17)$$

The distance of the point (x_p, y_p) to the non-centered, non-aligned ellipse is thus that of the point (x'_p, y'_p) to a centered and aligned ellipse, which can be computed as shown earlier.