1. Friedmann’s equation is
\[
\left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G \epsilon(t)}{3c^2} - \frac{kc^2}{R_0^2 a^2(t)} .
\]
(1)

For the case when the universe contains matter with negligible pressure only, the energy density changes as \(\epsilon(t) = \epsilon_0/a^3(t) \). Multiplying by \(a^2(t) \), we have
\[
(\dot{a})^2 = \frac{8\pi G \epsilon_0}{3c^2a} - \frac{kc^2}{R_0^2} .
\]
(2)

Now, using \(\dot{a} = (da/dt) = (da/d\theta)/(dt/d\theta) \), we find that the left-hand-side of equation (2) is
\[
(\dot{a})^2 = \frac{c^2}{R_0^2} \frac{\sin^2 \theta}{(1 - \cos \theta)^2} = \frac{c^2}{R_0^2} \frac{1 + \cos \theta}{1 - \cos \theta} ,
\]
(3)

where the last equality follows from \(\sin^2 \theta = 1 - \cos^2 \theta = (1 - \cos \theta)(1 + \cos \theta) \), and the right-hand-side of equation (2) is
\[
\frac{8\pi G \epsilon_0}{3c^2a} - \frac{kc^2}{R_0^2} = \frac{c^2}{R_0^2} \left(\frac{2}{1 - \cos \theta} - 1 \right) = \frac{c^2}{R_0^2} \frac{1 + \cos \theta}{1 - \cos \theta} .
\]
(4)

So the two sides of equation (2) are indeed equal, confirming that this parametric solution given as \(a(\theta) \) and \(t(\theta) \) is indeed a solution of Friedmann’s equation.

(a) The maximum value of \(a \) occurs at \(\theta = \pi \), and is
\[
a_{\text{max}} = \frac{8\pi G \epsilon_0 R_0^2}{3c^4} .
\]
(5)

(b) Correspondingly, the maximum value of the proper radius of curvature is
\[
a_{\text{max}} R_0 = \frac{8\pi G \epsilon_0 R_0^3}{3c^4} .
\]
(6)

(c) The age of the universe at \(\theta = \pi \) is
\[
t_{\text{max}} = \frac{4\pi^2 G \epsilon_0 R_0^2}{3c^5} .
\]
(7)

(d) The Big Crunch happens when \(\theta = 2\pi \), and we then have
\[
t_{\text{crunch}} = \frac{8\pi^2 G \epsilon_0 R_0^3}{3c^5} .
\]
(8)
2. (a) For the model with $\Omega_{m0} = 1$, the comoving distance is

$$r = c \int_0^z \frac{dz}{H(z)} = \frac{c}{H_0} \int_0^z \frac{dz}{(1 + z)^{3/2}} = \frac{2c}{H_0} \left(1 - \frac{1}{\sqrt{1 + z}}\right).$$

(9)

The comoving distance to the horizon, at $a = 0$ or $z = \infty$, is $r = 2c/H_0$.

(b) For this model, half the comoving distance to the horizon is $r = c/H_0$, and the redshift at which the comoving distance has this value is obtained as:

$$1 - \frac{1}{\sqrt{1 + z}} = \frac{1}{2}; \quad z = 3.$$

(10)

(c) For this same model, and at $z = 3$, the age of the universe is obtained from

$$t(z) = \int_1^\infty \frac{dz}{(1 + z)H(z)} = \frac{2}{3H_0} \frac{1}{(1 + z)^{3/2}}.$$

(11)

The present age of the universe is of course $t_0 = 2/(3H_0)$, and so the ratio of the age at $z = 3$ to its present age is just

$$\frac{t(z = 3)}{t_0} = \frac{1}{(1 + z)^{3/2}} = \frac{1}{8}.$$

(12)

(d) From the same equation as above, we find

$$\frac{t(z)}{t_0} = \frac{1}{(1 + z)^{3/2}} = \frac{1}{2}; \quad z = 2^{2/3} - 1 = 0.5874.$$

(13)

Note that all these equations are of course valid only for the specific model that is flat and contains only matter, with $\Omega_{m0} = 1$.

3. For the benchmark model, which is flat and contains matter and a cosmological constant (or a component with $p = -\rho$), we can use equation (6.28) in the textbook.

First, we find from equation (6.27) the constant

$$a_{m\Lambda}^3 = \frac{\Omega_{m0}}{1 - \Omega_{m0}} = 0.370,$$

(14)

for $\Omega_{m0} = 0.27$. This is the scale factor at which the matter and cosmological constant energy densities are equal, using the normalization $a_0 = 1$ for the present.

The present age of the universe is obtained from equation (6.27) for $a = a_0 = 1$, and is

$$H_0 t_0 = \frac{2}{3\sqrt{1 - \Omega_{m0}}} \log A_0,$$

(15)

where we have defined

$$A_0 = a_{m\Lambda}^{-3/2} + \sqrt{1 + a_{m\Lambda}^3} \simeq 3.57.$$

(16)
Now, we want to find the value of a for which $t = t_0/2$, as obtained from equation (6.27). This implies
\[\log A = \frac{\log A_0}{2}, \]
(17)

where
\[A = x + \sqrt{1 + x^2}; \quad x = \left(\frac{a}{a_{m\Lambda}} \right)^{3/2}. \]
(18)

The above equations imply $A = \sqrt{A_0}$, and so
\[x + \sqrt{1 + x^2} = \sqrt{A_0}; \quad 1 + x^2 = (\sqrt{A_0} - x)^2; \quad x = \frac{A_0 - 1}{2\sqrt{A_0}} = 0.680, \]
(19)

and
\[a = a_{m\Lambda} x^{2/3} = 0.555; \quad z = \frac{1}{a} - 1 = 0.802. \]
(20)

We see that the redshift at which the age of the universe was half the present age is larger in this benchmark model than in the model with $\Omega_{m0} = 1$. This is because in the benchmark model, which contains vacuum energy, the universe has started to accelerate recently, roughly since the epoch at $a = a_{m\Lambda}$. The universe took a longer time to expand to $a = 0.555$ and then it picked up speed again in its expansion up to the present $a_0 = 1$.

To prove equation (6.28) in the textbook, we start with the usual equation for the age of the universe at any redshift z, which in the case of the flat model with matter and a cosmological constant is
\[t(z) = \frac{1}{H_0} \int_{z}^{\infty} \frac{dz}{(1 + z)\sqrt{\Omega_{m0}(1 + z)^3 + \Omega_{\Lambda0}}}, \]
(21)

After substituting
\[y = \sqrt{1 + \frac{\Omega_{m0}}{\Omega_{\Lambda0}}(1 + z)^3}, \]
(22)

we find $2y dy = 3(y^2 - 1)dz/(1 + z)$, and so
\[t = \frac{2}{3H_0\sqrt{\Omega_{\Lambda0}}} \int_{y}^{\infty} \frac{dy}{y^2 - 1}. \]
(23)

The integral can be solved analytically as:
\[-\int \frac{dy}{y^2 - 1} = \frac{1}{2} \log \frac{y + 1}{y - 1} = \log \frac{y + 1}{\sqrt{y^2 - 1}}, \]
(24)

which yields for t
\[t = \frac{2}{3H_0\sqrt{\Omega_{\Lambda0}}} \left[\log \left(\frac{1}{\sqrt{y^2 - 1}} + \frac{y}{\sqrt{y^2 - 1}} \right) \right]_{\infty}^{1 + \Omega_{m0}(1 + z)^3/\Omega_{\Lambda0}}, \]
(25)
\[t = \frac{2}{3H_0 \sqrt{\Omega_\Lambda}} \log \left(\sqrt{\Omega_\Lambda \Omega_{m0}(1 + z)^3} + \sqrt{1 + \frac{\Omega_\Lambda}{\Omega_{m0}(1 + z)^3}} \right). \]

(26)